Mark Scheme (Results)
June 2011

IGCSE Chemistry (4CH0) Paper 2C

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can contact our Science Advisor directly by sending an email to Science specialist on Sciencesubjectadvisor@EdexcelExperts.co.uk.
You can also telephone 08445760037 to speak to a member of our subject advisor team.
(If you are calling from outside the UK please dial + 441204770696 and state that you would like to speak to the Science subject specialist).

June 2011
Publications Code UG027552
All the material in this publication is copyright
(C) Edexcel Ltd 2011

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Expected Answer	Accept	Reject	Marks
1	\bullet Fizzing occurs (box 2)		1	
	\bullet potassium moves around (box 4)			
	• potassium melts (box 5)			
	• a lilac flame is seen (box 7)		1	
	[If more than four boxes are ticked, deduct a mark for each incorrect answer above four]		1	

Total 4 Marks

Question number	Expected Answer	Accept	Reject	Marks
2 (a)	iron		1	
(b)	haematite		1	
(c)	ammonia		1	
(d)	sodium hydroxide		1	
(e)	ammonia		1	

Question number	Expected answer	Accept	Reject	Marks
$\begin{aligned} \hline 3 & \text { (a)(i) } \\ & \text { (a)(ii) } \end{aligned}$	Magnesium It would react with the sulfuric acid / the clouds / the atmosphere / it will fizz	Mg It is too reactive / very reactive / the most reactive Dissolve in the (sulfuric) acid/ eq	"reactive" by itself	1 1
(b)	it has low melting point / would melt / temperature on Venus is higher than the melting point of lead (ora) IGNORE heavy / dense	Lead would be a liquid Answer using data from table e.g. $328^{\circ} \mathrm{C}$ is lower than temp on Venus		1
(c)	Titanium Any two from: - it has a low density / is lightweight - it has a high melting point / wouldn't melt / temperature on Venus is lower than the melting point of titanium (ora) - does not react with sulfuric acid / the clouds / the atmosphere / it will not fizz	Ti The probe would be light Remains solid Reason marks can be scored for copper (density mark would need to be compared to lead)	Light on its own / light in weight on its own	1

Question number	Expected answer	Accept	Reject	Marks
5 (a)	Any two from magnesium chloride, calcium chloride, iron(II) chloride If more than 2 given, deduct 1 mark for each incorrect answer If name and formula given, both must be correct	$\mathrm{MgCl}_{2} / \mathrm{CaCl}_{2} / \mathrm{FeCl}_{2} /$ ferrous chloride / iron chloride	Iron(III) chloride / ferric chloride	2
(b) (c) (i) (ii)	To check the reliability / repeatability (of the results/method) IGNORE references to obtaining a mean / average IGNORE references to identifying anomalous results 4.30 circled Repeat the experiment IGNORE refs to validity / fair test	To get concordant / consistent / precise results To increase the accuracy (of the results) Discard / ignore this result Work out average only using other 2 results	To increase the validity / to make it a fair test To increase the accuracy of the method	1

5 (d)	Burette	Minor spelling mistakes, e.g. burrete / burete	Biuret	1
(e)	$\begin{aligned} & \frac{(1.60+1.70+1.65)}{3} \\ & =1.65 \end{aligned}$ ($2^{\text {nd }}$ mark consequential on 1 st and can be awarded if small slip in data) Correct answer on its own scores 2	Award 1 mark for a correct average of the data for any other row except iron (II) chloride or water Award 1 mark for use of 1.90 and 1.95 to give 1.93	Any answer not to 2 d.p. (loses $2^{\text {nd }}$ mark only)	1 1

Question number	Expected answer	Accept	Reject	Marks
6 (a)	Giant (structure / lattice / atomic / molecular) Covalent Idea that (covalent) bonds are broken (Covalent bonds) are strong / many bonds (are broken) / lots of \{energy/heat\} required NB No penalty for referring to graphite	Macromolecular	Max 2 for mentioning of ionic or metallic bonding or Intermolecular forces Bonds loosened	1 1 1 1
(b)	Layers slide / slip / move over each other IGNORE particles in layers such as atoms, but REJECT if ions / molecules / electrons for first mark only Weak (intermolecular forces of) attraction between layers / weak van der Waals (forces of attraction) between layers IGNORE references to bonds within the layers	Sheets / planes slide Any indication that the forces are those of attraction, e.g. forces overcome / forces are broken / forces hold the layers together	Rows slide Any reference to bonds between layers / molecules	1
(c)	Delocalised electrons (which) move / mobile / flow IGNORE references to "carrying" charge / current		Refs to atoms / ions / molecules scores 0/2	1 1

6 (d)	Any two from: Not a giant structure IGNORE simple molecular Weak intermolecular (forces of) attraction / weak (forces of) attraction between molecules / weak van der Waals (forces of attraction) between molecules No covalent bonds break (when melting)	Smaller molecules / simpler structure than diamond Any indication that the forces are those of attraction, e.g. forces overcome / forces broken / forces hold the molecules together First and third marking points can be awarded for correct comparisons between the two structures, e.g. buckminsterfullerene is simple molecular whereas diamond is giant covalent scores the first mark; weak intermolecular forces of attraction in buckminsterfullerene are broken as opposed to the covalent bonds in diamond (scores the $3^{\text {rd }}$ mark, as well as the 2nd)	MAX 1 for any mention of covalent bonds are broken in Buckminster fullerene Any reference to bonds between molecules	2

Question number	Expected answer	Accept	Reject	Marks
7 (a) (i) (ii)	$\begin{aligned} & 108 / 24 \\ & =4.5 \end{aligned}$ M_{r} of $\mathrm{NaN}_{3}=65$ Moles of $\mathrm{NaN}_{3}=3$ OR two thirds of (a)(i) Mass of $\mathrm{NaN}_{3}=195(\mathrm{~g}) \mathrm{OR}$ moles of $\mathrm{NaN}_{3} \times \mathrm{M}_{\mathrm{r}}$ [Mark consequentially at each stage]	1 mark for answer of 4.8(2) (molar volume $=22.4 \mathrm{dm}^{3}$) $23+(14 \times 3)$ Correct answer with no working scores 3		
(b) (i) (ii)	Removes (harmful) sodium $\begin{aligned} & \mathrm{K}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{SiO}_{2}(\mathrm{~s}) \rightarrow \mathrm{K}_{2} \mathrm{SiO}_{3}(\mathrm{~s}) \\ & \mathrm{OR} \\ & \mathrm{~K}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{SiO}_{2}(\mathrm{~s}) \rightarrow \mathrm{K}_{2} \mathrm{SiO}_{3}(\mathrm{l}) \end{aligned}$ IGNORE same numbers of $\mathrm{Na}_{2} \mathrm{O}$ on both sides of equation	Produces more nitrogen / gas OR bag inflates more quickly		1 1
(c) (i) (ii)	Precipitation Filtration / filter IGNORE refs to adding water	Double decomposition Decanting / pour off liquid	Double displacement Sieving / evaporation / distillation / crystallisation / heat	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Question number	Expected answer	Accept	Reject	Marks
8 (a)	It (like water) is a colourless (liquid) IGNORE it is clear / transparent IGNORE references to smell	it looks the same		1
(b)	(Sulfuric acid / it) contains water	Aqueous (Copper sulfate) becomes hydrated	Contains hydrogen and oxygen / the elements of water	1
(c)	Pressure: > 1 but ≤ 5 (atm)	Any range within this range, including 1 - 2 atm	Values in alternative units	1
	Temperature: 350 to $550\left({ }^{\circ} \mathrm{C}\right)$	Any range within this range	Values in alternative units	1
	Catalyst: vanadium(V) oxide	Vanadium pentoxide / $\mathrm{V}_{2} \mathrm{O}_{5}$ / vanadium oxide / vanadium(5) oxide		1

Further copies of this publication are available from
International Regional Offices at www.edexcel.com/international

For more information on Edexcel qualifications, please visit www.edexcel.com

Alternatively, you can contact Customer Services at www.edexcel.com/ask or on +441204770696

